Unfolded Deep Recurrent Convolutional Neural Network with Jump Ahead Connections for Acoustic Modeling

نویسندگان

  • Dung T. Tran
  • Marc Delcroix
  • Shigeki Karita
  • Michael Hentschel
  • Atsunori Ogawa
  • Tomohiro Nakatani
چکیده

Recurrent neural networks (RNNs) with jump ahead connections have been used in the computer vision tasks. Still, they have not been investigated well for automatic speech recognition (ASR) tasks. In other words, unfolded RNN has been shown to be an effective model for acoustic modeling tasks. This paper investigates how to elaborate a sophisticated unfolded deep RNN architecture in which recurrent connections use a convolutional neural network (CNN) to model a shortterm dependence between hidden states. In this study, our unfolded RNN architecture is a CNN that process a sequence of input features sequentially. Each time step, the CNN inputs a small block of the input features and the output of the hidden layer from the preceding block in order to compute the output of its hidden layer. In addition, by exploiting either one or multiple jump ahead connections between time steps, our network can learn long-term dependencies more effectively. We carried experiments on the CHiME 3 task showing the effectiveness of our proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Acoustic Modeling Using Bidirectional Gated Recurrent Convolutional Units

Convolutional and bidirectional recurrent neural networks have achieved considerable performance gains as acoustic models in automatic speech recognition in recent years. Latest architectures unify long short-term memory, gated recurrent unit and convolutional neural networks by stacking these different neural network types on each other, and providing short and long-term features to different ...

متن کامل

Deep Recurrent Convolutional Neural Network: Improving Performance For Speech Recognition

A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Given the arising problem of training speed, w...

متن کامل

How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX ne...

متن کامل

Pii: S0893-6080(98)00018-5

Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017